设计说明书
总字数:19000+
摘要
随着智能家居技术的不断发展,晾衣架的自动化与智能化成为提升生活便捷性的重要方向。传统手动晾衣架依赖人工操作,难以根据环境变化灵活调整,在应对天气突变(如下雨、大风)或衣物状态异常时响应滞后,无法满足现代家庭对高效、智能生活的需求。
基于 STM32F103C8T6 单片机的晾衣架设计,整合了 DHT11 温湿度传感器、光敏电阻、雨水检测模块、风速检测模块、分离式红外传感器、超声波传感器、步进电机、按键、显示屏及 WIFI 模块,实现了晾衣架的自动化控制与智能管理。系统核心功能包括:通过 DHT11 实时监测环境温湿度,当温度低于设定最小值或湿度高于设定最大值时,自动收回晾衣架;借助光敏电阻检测光照值,当光照低于最小值或高于最大值时,自动收回晾衣架;通过雨水检测模块感知降雨,若检测到下雨则立即收回晾衣架;利用风速检测模块监测风速,当风速超过设定最大值时,自动收回晾衣架,避免衣物吹落或设备损坏;通过分离式红外传感器监测衣物是否掉落,一旦检测到掉落,立即通过手机震动弹窗提醒用户;通过步进电机正反转控制晾衣架的伸出与收回,并结合超声波传感器检测障碍物,当障碍物距离小于设定最小值时,停止伸出或收回动作,保障设备安全;支持通过按键设置各环境参数阈值、手动控制晾衣架伸缩及模式切换;通过显示屏实时显示各项监测数据;利用 WIFI 模块将数据同步至手机端,实现远程监测、阈值设置、晾衣架伸缩控制及模式切换。
该设计有效提升了晾衣架的自动化与智能化水平,减少了人工干预,能够根据环境变化自适应调整,同时保障衣物安全与设备稳定,为家庭生活提供了便捷、可靠的解决方案,也为同类智能家居设备的研发提供了参考,具有较高的实际应用价值。
关键词:STM32F103C8T6;智能晾衣架;环境感知;自动控制;WIFI 通信
ABSTRACT
With the continuous development of smart home technology, the automation and intelligence of clothes drying racks have become an important direction to improve the convenience of life. Traditional manual clothes drying racks rely on manual operation, making it difficult to flexibly adjust according to environmental changes. They respond slowly to sudden weather changes (such as rain, strong winds) or abnormal clothing conditions, and cannot meet the needs of modern families for an efficient and intelligent life.
The design of the clothes drying rack based on the STM32F103C8T6 microcontroller integrates DHT11 temperature and humidity sensor, photoresistor, rain detection module, wind speed detection module, separate infrared sensor, ultrasonic sensor, stepper motor, buttons, display screen and WIFI module, realizing the automatic control and intelligent management of the clothes drying rack. The core functions of the system include: real-time monitoring of ambient temperature and humidity through DHT11, and automatically retracting the clothes drying rack when the temperature is lower than the set minimum value or the humidity is higher than the set maximum value; detecting the light intensity with the photoresistor, and automatically retracting the clothes drying rack when the light intensity is lower than the minimum value or higher than the maximum value; sensing rainfall through the rain detection module, and immediately retracting the clothes drying rack if rain is detected; monitoring wind speed with the wind speed detection module, and automatically retracting the clothes drying rack when the wind speed exceeds the set maximum value to avoid clothes being blown off or equipment damage; monitoring whether clothes fall off through the separate infrared sensor, and once a fall is detected, immediately reminding the user through a mobile phone vibration pop-up; controlling the extension and retraction of the clothes drying rack through the forward and reverse rotation of the stepper motor, and combining with the ultrasonic sensor to detect obstacles. When the distance to the obstacle is less than the set minimum value, the extension or retraction action is stopped to ensure equipment safety; supporting the setting of various environmental parameter thresholds through buttons, manual control of the extension and retraction of the clothes drying rack, and mode switching; real-time display of various monitoring data through the display screen; synchronizing data to the mobile phone through the WIFI module to realize remote monitoring, threshold setting, control of the extension and retraction of the clothes drying rack, and mode switching.
This design effectively improves the automation and intelligence level of the clothes drying rack, reduces manual intervention, can adaptively adjust according to environmental changes, and at the same time ensures the safety of clothes and the stability of equipment. It provides a convenient and reliable solution for family life, and also provides a reference for the research and development of similar smart home equipment, with high practical application value..
Keywords:STM32F103C8T6; intelligent clothes drying rack; environmental perception; automatic control; WIFI communication
目录
第1章 绪论
1.1 研究的目的及意义
1.2 国内外发展情况
1.3 本文主要研究内容
第2章 设计思路与方案论证
2.1 主要元器件选择
2.1.1 主控芯片选择
2.1.2 温湿度传感器选择
2.1.3 光照检测模块选择
2.1.4 雨水检测模块选择
2.1.5 风速检测模块选择
2.1.6 衣物掉落检测传感器选择
2.1.7 步进电机及驱动模块选择
2.1.8 按键模块选择
2.1.9 显示模块选择
2.1.10 WIFI 模块选择
2.1.11 超声波传感器选择
2.2整体设计方案
第 3 章 硬件设计
3.1 主控电路模块
3.2 温湿度传感器电路
3.3 光照检测模块电路
3.4 雨水检测模块电路
3.5 风速检测模块电路
3.6 分离式红外传感器电路
3.7 步进电机及驱动电路
3.8 按键模块电路
3.9 OLED 显示模块电路
3.10 WIFI 模块电路
3.11 超声波传感器电路
第4章 系统程序设计
4.1 编程软件介绍
4.2 系统主流程设计
4.3 独立按键
4.4 温湿度检测模块子流程
4.5 步进电机子流程
4.6 OLED显示流程设计
4.7 WiFi模块子流程设计
4.8 超声波检测模块子流程设计
第 5 章 实物测试
5.1 整体实物测试
5.2 温湿度传感器功能测试
5.3 光照与雨水检测模块功能测试
5.4 风速与超声波传感器功能测试
5.5 分离式红外与步进电机功能测试
5.6 WIFI 模块与按键功能测试
5.7 系统整体运行测试
第6章 总结与展望
6.1 总结
6.2 展望
致谢
参考文献
附录
附录一:原理图
附录二:PCB
附录三:主程序
购买后可查看具体内容!
 
       
                
            