设计说明书
总字数:18000+
摘要
随着农业现代化进程的不断加快,农田土壤环境的精准监测与科学调控对提高作物产量、保障农业可持续发展具有重要意义。传统的农田管理方式依赖人工采样检测,不仅效率低下、耗时费力,且存在数据滞后、监测范围有限等问题,难以满足规模化农田精细化管理的需求。
基于 Zigbee 技术的农田土壤监测系统,以 STM32F103C8T6 单片机为核心,整合了 DHT11 温湿度传感器、5516 光照检测模块、ZTS-3002-TR-ECTHNPKPH-N01 七合一土壤监测模块、Zigbee 通信模块、3 个独立按键、OLED 显示屏、ESP8266WiFi 模块及水泵、中和液设备、营养液设备、声光报警装置等执行设备,实现了农田环境与土壤参数的自动化监测、智能调控及远程管理。系统核心功能包括:从机通过各类传感器实时监测环境温湿度、光照值及土壤温度、水分、电导率、PH 值、氮磷钾含量,当土壤水分低于最小值时自动启动水泵灌溉,达到最大值时停止;PH 值超出设定范围时,控制中和液设备进行调节;氮磷钾含量低于最小值时,启动营养液设备补充,任一参数异常时触发声光报警,并通过 Zigbee 将数据发送至主机;主机通过 Zigbee 接收从机数据,支持通过按键设置从机的各项参数阈值,借助 OLED 显示屏实时显示监测数据,同时通过 ESP8266WiFi 模块将数据传输至手机端,实现手机端参数设置、设备控制及异常情况弹窗震动提醒。
该系统的实现,有效提升了农田土壤监测的自动化与智能化水平,减少了人工干预,确保了农田环境参数的稳定可控,为规模化农田管理提供了高效、可靠的解决方案,同时为同类农业监测设备的研发提供了参考,具有较高的实际应用价值。
关键词:Zigbee 技术;农田土壤;监测系统;STM32F103C8T6;传感器;智能调控;WiFi 通信
ABSTRACT
With the accelerating process of agricultural modernization, precise monitoring and scientific regulation of farmland soil environment are of great significance for improving crop yield and ensuring sustainable agricultural development. Traditional farmland management methods rely on manual sampling and detection, which are not only inefficient, time-consuming and labor-intensive, but also have problems such as data lag and limited monitoring range, making it difficult to meet the needs of refined management of large-scale farmland.
The farmland soil monitoring system based on Zigbee technology, with STM32F103C8T6 microcontroller as the core, integrates DHT11 temperature and humidity sensor, 5516 light detection module, ZTS-3002-TR-ECTHNPKPH-N01 seven-in-one soil monitoring module, Zigbee communication module, 3 independent buttons, OLED display, ESP8266WiFi module, and executive devices such as water pump, neutralizing solution equipment, nutrient solution equipment, and sound and light alarm device, realizing automatic monitoring, intelligent regulation and remote management of farmland environment and soil parameters. The core functions of the system include: the slave machine monitors environmental temperature and humidity, light value, and soil temperature, moisture, electrical conductivity, PH value, nitrogen, phosphorus and potassium content in real time through various sensors. When the soil moisture is lower than the minimum value, it automatically starts the water pump for irrigation and stops when it reaches the maximum value; when the PH value exceeds the set range, it controls the neutralizing solution equipment for adjustment; when the nitrogen, phosphorus and potassium content is lower than the minimum value, it starts the nutrient solution equipment for supplementation. When any parameter is abnormal, it triggers an acoustic and optical alarm and sends data to the host through Zigbee; the host receives data from the slave through Zigbee, supports setting various parameter thresholds of the slave through buttons, displays monitoring data in real time with the help of OLED display, and transmits data to the mobile phone through ESP8266WiFi module, realizing parameter setting, equipment control and pop-up vibration reminder for abnormal situations on the mobile phone.
The implementation of this system effectively improves the automation and intelligence level of farmland soil monitoring, reduces manual intervention, ensures the stability and controllability of farmland environmental parameters, provides an efficient and reliable solution for large-scale farmland management, and also provides a reference for the research and development of similar agricultural monitoring equipment, with high practical application value.
Keywords: Zigbee technology; Farmland soil; Monitoring system; STM32F103C8T6; Sensor; Intelligent regulation; WiFi communication
目录
第 1 章 绪论
1.1 研究的目的及意义
1.2 国内外发展情况
1.3 本文主要研究内容
第2章 设计思路与方案论证
2.1 主要元器件选择
2.1.1 主控芯片选择
2.1.2 温湿度传感器选择
2.1.3 光照检测模块选择
2.1.4 土壤多参数检测模块选择
2.1.5 Zigbee 通信模块选择
2.1.6 WiFi 模块选择
2.1.7 显示模块选择
2.1.8 按键模块选择
2.2整体设计方案
第 3 章 硬件设计
3.1 主控电路模块
3.2 温湿度传感器电路
3.3 光照检测模块电路
3.4 ZTS-3002 七合一土壤监测模块电路
3.5 Zigbee 通信模块电路
3.6 显示模块电路
3.7 按键模块电路
第4章 系统程序设计
4.1 编程软件介绍
4.2 系统主流程设计
4.3 从机系统主流程设计
4.4 独立按键
4.5 OLED显示流程设计
4.6 ADC模数转换子流程设计
4.7 温湿度检测模块子流程设计
4.8 zigbee模块子流程设计
4.7 WiFi模块子流程设计
4.8 土壤环境检测模块子流程设计
第 5 章 实物测试
5.1 整体实物测试
5.2 温湿度传感器功能测试
5.3 光照检测模块功能测试
5.4 ZTS-3002 土壤监测模块功能测试
5.5 Zigbee 通信模块功能测试
5.6 显示模块功能测试
5.7 按键模块功能测试
第 6 章 总结与展望
6.1 总结
6.2 展望
致谢
参考文献
附录
附录一:原理图
附录二:PCB
附录三:主程序
购买后可查看具体内容!