设计说明书
总字数:20000+
摘要
花烛作为观赏性强、生长环境要求较高的热带植物,其健康生长依赖于适宜的温度、湿度、光照、CO₂浓度及土壤水分等环境条件。传统养护方式依赖人工经验调控,易因环境参数波动导致生长不良,且难以实现精准化、自动化管理。因此,研发一种能实时监测环境参数并自动调控的智能养护系统,对提升花烛养护效率与生长质量具有重要意义。
本设计提出一种基于 STM32F103C8T6 单片机的物联网花烛智能养护系统。系统主要功能包括:通过 DHT11 传感器检测环境温湿度,温度低于最小值时自动启动加热片,高于最大值时开启风扇降温,湿度低于最小值时控制雾化器加湿;通过 5516 光照检测模块监测光照强度,光照高于最大值时自动打开遮阳棚,低于最小值时开启照明灯;通过 YL-69 土壤湿度检测模块感知土壤水分,湿度低于最小值时自动启动水泵灌溉;通过 SGP30 传感器检测环境 CO₂浓度,浓度高于最大值时自动开启风扇通风;通过 DS1302 时钟模块获取时间,支持设置雾化片早上自动开启时间;用户可通过按键设置各环境参数阈值,控制继电器、遮阳棚开关;OLED 显示屏实时显示各项测量数据;通过 ESP8266-WiFi 模块将数据上传至手机端,支持手机远程设置阈值及控制继电器、遮阳棚开关。
该系统的作用在于构建了 “监测 – 分析 – 调控 – 远程管理” 的一体化花烛养护机制。通过多传感器协同监测关键环境参数,结合自动调控与定时控制功能,为花烛提供稳定适宜的生长环境;物联网功能实现了手机端远程数据查看与设备控制,降低人工干预成本。系统为花烛养护提供了精准化、智能化解决方案,有效提升了养护便捷性与生长质量。
关键词:物联网;花烛养护;智能控制系统;环境监测;STM32F103C8T6
Intelligent maintenance system for candles based on the Internet of Things
Abstract
As a tropical plant with strong ornamental value and high growth environment requirements, the healthy growth of candles depends on suitable environmental conditions such as temperature, humidity, light, CO ₂ concentration, and soil moisture. Traditional maintenance methods rely on manual experience regulation, which can easily lead to poor growth due to fluctuations in environmental parameters, and are difficult to achieve precise and automated management. Therefore, developing an intelligent maintenance system that can monitor environmental parameters in real-time and automatically regulate them is of great significance for improving the efficiency and growth quality of candle maintenance.
This design proposes an IoT candle intelligent maintenance system based on STM32F103C8T6 microcontroller. The main functions of the system include: detecting environmental temperature and humidity through DHT11 sensors, automatically starting the heating element when the temperature is below the minimum value, turning on the fan to cool down when it is above the maximum value, and controlling the atomizer to humidify when the humidity is below the minimum value; Monitor the light intensity through the 5516 light detection module. When the light is above the maximum value, the sunshade will automatically open, and when it is below the minimum value, the lighting will be turned on; Sensing soil moisture through YL-69 soil moisture detection module, automatically starting the water pump for irrigation when the humidity is below the minimum value; Detect the concentration of CO ₂ in the environment through the SGP30 sensor, and automatically turn on the fan for ventilation when the concentration exceeds the maximum value; Obtain time through DS1302 clock module and support setting the automatic start time of the atomizer in the morning; Users can set various environmental parameter thresholds and control relays and sunshade switches through buttons; Real time display of various measurement data on OLED display screen; Upload data to the mobile phone through the ESP8266 WiFi module, supporting remote threshold setting and control of relays and sunshade switches on the phone.
The function of this system is to establish an integrated candle maintenance mechanism of “monitoring analysis regulation remote management”. By monitoring key environmental parameters through multi-sensor collaboration, combined with automatic regulation and timing control functions, a stable and suitable growth environment is provided for candles; The Internet of Things enables remote data viewing and device control on mobile devices, reducing the cost of manual intervention. The system provides precise and intelligent solutions for candle maintenance, effectively improving maintenance convenience and growth quality.
Keywords:Internet of Things; Candle maintenance; Intelligent control system; Environmental monitoring; STM32F103C8T6
目 录
1 绪论
1.1 研究背景及意义
1.2 国内外研究现状
1.3 主要内容
2 系统总体方案设计
2.1系统总体设计
2.2 主要模块方案选择
3 系统硬件设计
3.1 总体硬件框架
3.2 主控模块电路设计
3.3 温湿度检测模块电路设计
3.4 光照检测模块电路设计
3.5 土壤湿度检测模块电路设计
3.6 CO₂浓度检测模块电路设计
3.7 时钟模块电路设计
3.8 显示模块电路设计
3.9 按键模块电路设计
3.10 继电器控制模块电路设计
3.11 步进电机驱动模块电路设计
3.12 WiFi 通信模块电路设计
4 系统程序设计
4.1 编程软件介绍
4.2 系统主流程设计
4.3 独立按键
4.4 OLED显示流程设计
4.5 温湿度检测模块子流程
4.6 SGP30模块子流程设计
4.7 时钟模块子流程设计
4.8 WiFi模块子流程设计
5 实物制作与功能测试
5.1 实物制作
5.2 温湿度检测与联动控制功能测试
5.3 光照检测与遮阳照明控制功能测试
5.4 土壤湿度检测与灌溉控制功能测试
5.5 CO₂浓度检测与通风控制功能测试
5.6 时钟与定时加湿功能测试
5.7 阈值设置与设备手动控制功能测试
5.8 WiFi 远程监测与控制功能测试
6 总结
参考文献
致谢
附录A 原理图
附录B PCB
附录C 主程序
购买后可查看具体内容!