设计说明书
总字数:17000+
随着现代农业向精准化、智能化转型,土壤温湿度的稳定控制成为提升大棚种植产量与品质的关键因素。土壤温度过低易导致作物根系发育不良,过高则可能引发病虫害;土壤湿度过低会影响作物水分吸收,过高则易造成烂根,这些问题若依赖人工经验调控,不仅效率低下、精准度不足,还会增加人力成本,难以满足规模化种植需求。此外,传统浇灌系统缺乏远程监测与控制能力,管理人员无法实时掌握大棚环境状态,应急响应滞后。因此,研发一套集温湿度自动监测、智能调控、数据传输及远程管理于一体的大棚智能浇灌系统具有重要现实意义。
本设计提出一种基于 STM32F103C8T6 单片机的大棚智能浇灌系统,采用 “主机 – 从机” 分布式架构。从机功能包括:通过 2 个防水式 DS18B20 模块采集土壤温度并计算平均值,温度低于下限值时通过继电器启动加热棒,高于上限值时启动风扇降温;通过 2 个 YL69 模块采集土壤湿度并计算平均值,湿度低于下限值时启动水泵浇灌至上限值;通过 ZigBee 模块将温湿度数据传输至主机。主机功能包括:通过 ZigBee 模块接收从机数据;通过 3 个独立按键设置温湿度上下限值,参数异常时触发声光报警;通过 ESP8266 WIFI 模块将数据发送至手机端,支持手机远程设置参数及控制加热、降温、浇灌设备。
该系统的作用在于,为大棚种植提供智能化、精准化的管理解决方案。通过自动温湿度调控与精准浇灌,保障作物生长环境稳定;远程监测与控制功能降低人力成本,提高管理效率,助力现代农业规模化、智能化发展。
关键词:STM32F103C8T6;大棚智能浇灌;温湿度监测;ZigBee 通信;远程控制
Design of Greenhouse Intelligent Irrigation System
Abstract
With the transformation of modern agriculture towards precision and intelligence, the stable control of soil temperature and humidity has become a key factor in improving the yield and quality of greenhouse cultivation. Excessively low soil temperature can lead to poor root development of crops, while excessively high temperature may cause diseases and pests; excessively low soil humidity affects water absorption of crops, and excessively high humidity can easily cause root rot. If these problems rely on manual experience for regulation, it is not only inefficient and inaccurate, but also increases labor costs, making it difficult to meet the needs of large-scale cultivation. In addition, traditional irrigation systems lack remote monitoring and control capabilities, so managers cannot grasp the greenhouse environment status in real time, resulting in delayed emergency response. Therefore, it is of great practical significance to develop a greenhouse intelligent irrigation system integrating automatic temperature and humidity monitoring, intelligent regulation, data transmission and remote management.
This design proposes a greenhouse intelligent irrigation system based on STM32F103C8T6 single-chip microcomputer, adopting a “host-slave” distributed architecture. The slave functions include: collecting soil temperature through 2 waterproof DS18B20 modules and calculating the average value; starting the heating rod through the relay when the temperature is lower than the lower limit, and starting the fan for cooling when the temperature is higher than the upper limit; collecting soil humidity through 2 YL69 modules and calculating the average value; starting the water pump for irrigation until reaching the upper limit when the humidity is lower than the lower limit; transmitting temperature and humidity data to the host through ZigBee module. The host functions include: receiving slave data through ZigBee module; setting upper and lower limits of temperature and humidity through 3 independent buttons, and triggering sound and light alarm when parameters are abnormal; sending data to mobile phone through ESP8266 WIFI module, supporting remote parameter setting and control of heating, cooling and irrigation equipment via mobile phone.
The function of this system is to provide an intelligent and precise management solution for greenhouse cultivation. Through automatic temperature and humidity regulation and precise irrigation, it ensures a stable growth environment for crops; the remote monitoring and control functions reduce labor costs and improve management efficiency, helping the large-scale and intelligent development of modern agriculture.
Keywords:STM32F103C8T6; Greenhouse Intelligent Irrigation; Temperature and Humidity Monitoring; ZigBee Communication; Remote Control
目 录
1 绪论
1.1 研究背景及意义
1.2 国内外研究现状
1.3 主要内容
2 系统总体方案设计
2.1 系统总体设计
2.2 主要模块方案选择
3 系统硬件设计
3.1 总体硬件框架
3.2 从机系统硬件设计
3.3 主机系统硬件设计
4 系统程序设计
4.1 编程软件介绍
4.2 系统主流程设计
4.3 温度检测模块子流程设计
4.4 土壤湿度检测模块子流程设计
4.5 zigbee模块子流程设计
4.6 WiFi模块子流程设计
4.7 独立按键子流程设计
4.8 OLED显示屏子流程设计
4.9 声光报警模块子流程设计
5 实物制作与功能测试
5.1 实物制作
5.2 从机温湿度检测与自动调控功能测试
5.3 ZigBee 数据传输功能测试
5.4 主机参数设置与声光报警功能测试
5.5 ESP8266 WiFi 远程传输与控制功能测试
5.6 系统整体联动功能测试
6 总结
参考文献
致谢
附录A 原理图
附录B PCB
附录C 主程序
购买后可查看具体内容!